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Abstract. Data collection for both training and testing a classifier is a tedious 
but essential step towards face detection and recognition. It is a piece of cake to 
collect more than hundreds of thousands of examples from web and digital 
camera nowadays. How to train a face detector based on the collected immense 
face database? This paper presents a manifold-based method to select a training 
set. That is to say we learn the manifold from the collected enormous face data-
base and then subsample and interweave the training set by the estimated geo-
desic distance in the low-dimensional manifold embedding. By the resulting 
training set, we train an AdaBoost-based face detector. The trained detector is 
tested on the MIT+CMU frontal face test set. The experimental results show 
that the proposed method based on the manifold is efficient to train a classifier 
confronted with the huge database. 

1   Introduction 

Over the past ten years, face detection has been thoroughly studied in computer vision 
research for its wide potential applications, such as video surveillance, human com-
puter interface, face recognition, and face image database management etc. Face de-
tection is to determine whether there are any faces within a given image, and return 
the location and extent of each face in the image if one or more faces present [31]. 
Recently, the emphasis has been laid on data-driven learning-based techniques, such 
as [7, 13, 14, 15, 19, 20, 21, 22, 30]. All of these schemes can be found in the recent 
survey by Yang [31]. After the survey, one of the important progresses is the boost-
ing-based method proposed by Viola [23] who uses the Haar features for the rapid 
object detection, and a lot of related works then followed [11, 12, 28]. 

The performance of these learning-based methods highly depends on the training 
set, and they suffer from a common problem of data collection for training. It is a 
piece of cake to collect more than hundreds of thousands of examples from web and 
digital camera nowadays. How to train a classifier based on the collected immense 
face database? This paper will give a solution. 

In nature, how to train a classifier based on the collected immense face database is 
a problem of data mining. In this paper we will use the knowledge of the manifold to 
subsample a small subset from the collected huge face database and then interweave 
some big hole among the manifold embedding. Manifold can help us to transform the 
data to a low-dimensional space with little loss of information, which can enable us to 
visualize data, perform classification and cluster more efficiently. Recently, some 
representative techniques, including isometric feature mapping (ISOMAP) [25], local 
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linear embedding (LLE) [17], and Laplacian Eigenmap [1], have been proposed. The 
ISOMAP algorithm is intuitive, well understood and produces reasonable mapping 
results [9, 10, 29]. Also, it is supported theoretically [2, 5, 32], which has been devel-
oped by [3, 8, 16, 18, 24, 26, 27]. 

The main contributions of this paper are: 

1. Subsample a small but efficient and representative subset from the collected huge 
face database based on the manifold embedding to train a classifier. 

2. Interweave the subsampled manifold embedding to fill in the big holes to com-
plete the training set furthermore. 

3. The performance is instable to train a detector based on the random subsampling 
face set from a huge database. However, a detector trained based on the subsam-
pled face set by the data manifold is not only stable but also can improve the de-
tector performance. 

The rest of this paper is organized as follows: After a review of ISOMAP, the pro-
posed subsampling and interweaving method based on the manifold embedding is 
described in section 2. Experimental results are presented in section 3, followed by 
discussion in section 4. 

2   Subsampling Based on ISOMAP 

2.1   ISOMAP Algorithm 

The goal of learning the data manifold is to show high-dimensional data in its intrin-
sic low-dimensional structures and use easily measured local metric information to 
learn the underlying global geometry of a data set [25]. Given a set of data points 

1{ ,  ,  }nX x x= !  in a high dimensional space, let ( , )X i jd x x  be the distance between 

ix  and jx ; let d
iy R∈  be the co-ordinates corresponding to ix  and 

1 { ,   ,  }nY y y= ! . Let ( , )Y i jd y y  be the distance between iy  and jy , which is an 

Euclidean distance in a d-dimensional Euclidean space Y. ISOMAP attempts to re-
cover an isometric mapping from the co-ordinate space to the manifold. The 
neighborhood is necessary to be specified by ISOMAP. It can be knn -neighborhood, 
where ix and jx are neighbors if ix ( jx ) is one of the k nearest neighbors (knn) of 

jx ( ix ). 

Let the vertex iv V∈ corresponding to ix ; between iv and jv , an edge  ( ,  )e i j  ex-

ists iff ix is a neighbor of jx . The weight of ( ,  )e i j is simply ( , )X i jd x x . And then a 

weighted undirected neighborhood graph ( , )G V E= is constructed. Let ( , )G i jd v v  

denote the length of the shortest path ( ,  )sp i j between iv and jv . The shortest paths 

can be found by the Dijkstra's algorithm, and the shortest paths can be stored effi-
ciently by the predecessor matrix ijτ , where ij kτ =  if kv is immediately before jv  in 

( ,  )sp i j . We may call ( , )G i jd v v  �geodesic distance�. That is to say after embedding 

the high-dimensional data manifold into low-dimensional structures, we can use 
straight lines in the embedding to approximate the true geodesic path. 
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2.2   Subsampling Algorithm 

As discussed in [25], with the increase of the embedding dimensionality d, the differ-
ence between the Euclidean distance in the d-dimensional Euclidean space Y and the 
true geodesic path decreases. Therefore, after learning its manifold and embedding it 
in low-dimensionality, we can use the Euclidean distance in the d-dimensional 
Euclidean space Y to delete some examples from the huge database. And the remained 
examples can still keep the data�s intrinsic geometric structure basically. By this 
means, we can get a small representative subset of the huge data. 

         
 (a) (b) (c) 

Fig. 1. Subsampling based on the manifold embedding. (a) The schematic of subsampling 
based on the estimated geodesic distance; (b) the manifold embedding of the 698 raw face 
images [25]; (c) the results of subsampling based on the estimated geodesic distance 

The scheme is demonstrated in Fig. 1 (a). We sort all of the Euclidean distance 
(i.e., the estimated geodesic distance) between pairs of points iy  and jy  in the d-

dimensional Euclidean space Y in increasing order. If the estimated geodesic distance 
between an example and its neighbor examples is smaller than a given threshold, it 
will be deleted while its neighbor examples will be reserved. For example, as shown 
in Fig. 1 (a), the data point 1 and 2 will be deleted when subsampling in the embed-
ding while its neighbors are reserved. As to the data point 3, it is preserved since the 
estimated geodesic distance between it and its neighbors are bigger than the given 
threshold. From the figure of top right in Fig. 1 (a), the remained examples can still 
maintain the data�s intrinsic geometric structure basically. 

As demonstrated in Fig. 1 (b), it is a two-dimensional projection of 698 raw face 
images where the three-dimensional embedding of data�s intrinsic geometric structure 
is learned by ISOMAP (K=6) [25]. Fig. 1 (c) is the results of subsampling where the 
data points (blue circle) are deleted and the remained data points are still in red dots. 

If we want to subsample 90% examples from a whole set, what we need to do is to 
delete its 10% examples since their corresponding estimated geodesic distances to 
their neighbors are in the front of the sorted distance sequence. 

2.3   Interweaving Algorithm 

To complete the training set furthermore, we fill in the hole among the manifold em-
bedding after the subsampling. The basic idea is as shown in Fig.2. The solid circle 
points in Fig 2 (a) are the filled examples. How to search these holes in the manifold 
embedding? In our case, we calculate the median of all of the Euclidean distance 
between pairs of points iy  and its nearest neighbor jy  in the d-dimensional Euclid-

ean space Y. The median is used as the radius of the searching ring as demonstrated in 
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Fig.2 (b). Moving the searching ring along the embedding, we can get several holes 
wanted. As shown in Fig 2 (c), the centers of these holes are the places where we 
generate virtual samples. 

       
 (a) (b) (c) 

Fig. 2. Interweaving based on the manifold embedding. (a) The schematic of interweaving 
based on the estimated geodesic distance; (b) the searched holes among the manifold embed-
ding of the Swiss roll [25]; (c) the results of interweaving based on the estimated geodesic 
distance 

Having found the holes in the embedding, the next step is to generate the virtual 
examples to fill in these holes. In our case, after we have learned the manifold em-
bedding about the face example set, we fill in the holes with some virtual face exam-
ples. The basic idea is as following: 

1. Perform PCA to the face database, then a coefficient vector ie
"

 is computed for 

each sample if  in our face database 1 2{ ,  ,  ...,  }nf f f , where n is the number of the 
face examples; 

2. Get the K neighbors 1 2{ ,  ,  ...,  }n n nKf f f  of a virtual example ( 1,..., )pVE p m=  and 

the Euclidean distance ( , )( 1,..., )Y p id VE f i K= between it and its neighbors in the 

d-dimensional Euclidean space Y, where m is the number of virtual examples; 
3. Calculate the weight ( , ) 1/ ( , )pi Y p i Y p iVE f d VE fω ω= = , and are normalized: 

1

pi
pi K

pi
i

ω
ω

ω
=

=
∑

# ; 

4. The coefficient vector pe
"

of the virtual example pVE  is generated by the linear 

combination of the corresponding coefficient vectors 1 2{ ,  ,  ...,  }n n nKe e e" " "
: 

1 1 2 2 ...p p n p n pK nKe e e eω ω ω= + + +" " " "# # # ; 

5. Reconstruct the virtual example pVE  with the coefficient vector pe
"

. 

Some synthetic virtual samples are shown in table 1, while some synthetic virtual 
samples and its neighbors are shown in table 2. From the table 1, one can conclude 
that these synthetic virtual samples look like the real faces very much. From the table 
2, one can conclude that the virtual face in the white complexion is constructed by 
several faces also in the white complexion, while the virtual face in the black is con-
structed by several faces also in the black and the female by several females. 
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3   Experiments 

3.1   Detector Based on the MIT Face Database 

The data set is consisted of a training set of 6,977 images (2,429 faces and 4,548 non-
faces) and the test set is composed of 24,045 images (472 faces and 23,573 non-
faces). All of these images are 19 19×  grayscale and they are available on the CBCL 
webpage [33]. 

Table 1. Original samples vs. synthetic virtual samples 

Original samples           
Synthetic virtual samples           

Table 2. Synthetic virtual sample and its conresponding original samples 

Synthetic virtual sample:  (in the white complexion) 

Original samples       
weight 0.1172 0.1109 0.0883 0.0816 0.0803 0.0800 

Original samples       
weight 0.0780 0.0776 0.0758 0.0734 0.0690 0.0675 

Synthetic virtual sample:  (in the black complexion) 

Original samples       
weight 0.1179 0.1132 0.0951 0.0850 0.0838 0.0770 

Original samples       
weight 0.0760 0.0716 0.0712 0.0703 0.0692 0.0690 

Synthetic virtual sample:  (a female) 

Original samples       
weight 0.0887 0.0874 0.0874 0.0847 0.0843 0.0828 

Original samples       
weight 0.0828 0.0825 0.0811 0.0803 0.0796 0.0779 

We let K=6 when ISOMAP learns the manifold of 2,429 faces in MIT database. 
The intrinsic dimensionality of the database can be estimated by the inflexion of the 
curve [25]. As to the MIT face database, its residual variance decreases while the 
dimensionality d increases as shown in Fig. 3. We can let d=10 for the MIT database. 
However, the residual variance is still 0.097. It is because the face examples in MIT 
database are too complex, such as different people and variations in poses, facial 
expressions, lighting conditions. 

Note that all of these examples are performed by histogram equalization before 
learning the manifold. It is because all examples to train a classifier are needed histo-
gram equalization which maps the intensity values to expand the range of intensities. 

In order to study the relationship between the distribution of the training set and the 
trained detector, we subsample the MIT face database by 90%, 80% and 70% (named 
as ISO90, ISO80, ISO70 later) as discussed in section 2.2. Subsampling by 90% is to 
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say we reserve 90% examples of the database and the same meaning of 80% and 
70%. Note that ISO70 is a subset of ISO80 and ISO80 is a subset of ISO90 in fact. 

The three subsampled face sets together with the non-face are used to train three 
classifiers based on the AdaBoost as demonstrated in [23]. And then they are tested 
on the test set of MIT database. The ROC curves of these three classifiers are shown 
in Fig. 4 (a). From these ROC curves, one can conclude that the detector trained by 
ISO90 is the best of all and improves the performance of the detector distinctly com-
pared with the detector even by the entire face examples in MIT database. Even the 
detector trained on ISO70 is a little better than the detector trained on the entire ex-
amples. Some possible reasons: the first one is the examples of ISO90 distribute 
evenly in the example space and has no example congregate compared with the whole 
set; the second is that the outliers in the whole set deteriorate its performance which 
has been discarded during the manifold learning [25] (During the ISOMAP learning, 
we get 30 outliers.). 

However, random subsampling from the MIT database is not so lucky. We choose 
four subsets randomly-subsampled from the MIT database and each subset has the 
same number of examples as in ISO90. After trained on these four sets, they are also 
tested on the same test set. The ROC curves are shown in Fig. 4 (b). In this figure, we 
plot the resulting ROC curves of detectors on the whole set, ISO90, and two randomly 
chosen subsets. Herein, the curve �90.6% examples based on the random subsampling 
n1� and the curve �90.6% examples based on the random subsampling n2� represent 
the best and the worst results of these four random sampling cases. From these ROC 
curves, one can conclude that the detector based on ISO90 is still the best of all and 
the results based on random subsampling is much instable. We also think that the 
evenly-distributed examples and no outliers contribute to this kind of results. 

After the subsampling, we interweave the manifold embedding as discussed in sec-
tion 2.3. As shown in Fig. 5 (a), we add the different number of virtual examples in 
the set ISO90. There are 100 or 500 examples are added into ISO90, respectively. 
One can conclude that a few numbers of added examples is valuable for training a 
detector. When the number is up to 500, it will be deteriorate. As shown in Fig. 5 (b), 
we change the radius of the searching ring. The first 100 examples are searched by the 
radius equal to the median, while the second 100 examples are searched by the radius 
equal to the 1.1×median and the third 100 equal to the 1.2×median. One can conclude 
when the radius of the searching ring is equal to the median, the added 100 examples 
is most valuable for training a detector. 

 
Fig. 3. The residual variance of ISOMAP on the MIT face database 
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3.2   Detector Based on the Huge Database 

To compare the performance difference on different training sets further, we also use 
another three different face training sets. The face-image database consists of 10,000 
faces (collected form web, video and digital camera), which cover wide variations in 
poses, facial expressions and also in lighting conditions. To make the detection 
method robust to affine transform, the images are often rotated, translated and scaled 
[6]. After these preprocessing, we get 90,000 face images which constitute the whole 
set. The first group is composed of 14,000 face images which are sampled by the 
ISOMAP (called ISO14000, here). The second and third group are also composed of 
14,000 face images which are random subsampling examples from the whole set 
(named Rand1-14000 and Rand2-14000, respectively). 

 
 (a) (b) 

Fig. 4. The ROC curves on the MIT test set. (a) Using the subsampling face example sets based 
on the manifold embedding and the whole set as training set for a fixed classifier. (b) Using the 
subsampling face example sets based on the manifold embedding, two random sampling sets 
and the whole set as training set for a fixed classifier 

     
 (a) (b) 

Fig. 5. The ROC curves on the MIT test set using the interweaving face example sets based on 
the manifold embedding. (a) Add the different number of virtual examples in the training set 
ISO90. (b) Change the radius of the searching ring 

It is hard to learn the manifold from 90,000 examples by the ISOMAP because it 
needs to calculate the eigenvalues and eigenvectors of a 000,90000,90 ×  matrix. In 
order to avoid this problem, as demonstrated in Fig. 6, we divide the whole set into 30 
subsets and each subset has 3,000 examples. We get 1,000 examples by the proposed 
method from each subset and then incorporate every three subsampled sets into one 
subset. We will have 10 subsets with the total 30,000 examples. With the same proce-
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dure, we can get 1,400 examples by the proposed method from each incorporated 
subset and then incorporate all subsampled examples into one set with the total 
14,000 examples. 

The non-face class is initially represented by 14,000 non-face images. Each single 
classifier is then trained using a bootstrap approach similar to that described in [22] to 
increase the number of negative examples in the non-face set. The bootstrap is carried 
out several times on a set of 13,272 images containing no faces. 

 

Fig. 6. Subsampling procedure by ISOMAP to get 14,000 examples from 90,000 examples 

The resulting detectors, trained on the three different sets, are evaluated on the 
MIT+CMU frontal face test set which consists of 130 images showing 507 upright 
faces [19]. The detection performances on this set are compared in Fig. 7 (a). From 
these ROC curves one can conclude that the detector based on ISO14000 is the best of 
all and the results based on random subsampling is also much instable. During the 
ISOMAP learning, we get 838 outliers. We think that the evenly-distributed examples 
and no outliers contribute this kind of results, again. 

   
 (a) (b) 

Fig. 7. The ROC curves for the trained detectors. (a) Train detector based on the sampled train-
ing set by the ISOMAP and the random subsampling training set. (b) Train detector by adding 
the virtual samples 
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Based on the subsampled training set ISO14000, we add some virtual examples 
(800, 1200 respectively) by the proposed method. As shown in Fig. 7 (b), the detec-
tors by ISO14000 together with adding virtual example outperform the detector only 
by ISO14000. Some results of our trained detector based on ISO14000 + 800 exam-
ples are shown in Fig.8. 

   

   
Fig. 8. Some results of our trained detector 

4   Conclusion 

In this paper, we present a novel manifold-based method to subsample a small but 
efficient and representative training subset from the collected enormous face database. 
After learning the manifold from the collected face database, we subsample the train-
ing set by the estimated geodesic distance in the manifold embedding and then inter-
weave the big holes in the embedding. An AdaBoost-based face detector is trained on 
the resulting training set in the low-dimensional manifold embedding, and then we 
test it on the MIT+CMU frontal face test set. Compared with the AdaBoost-based 
face detector using random subsampling examples, the detector trained by the pro-
posed method is more stable and achieve better face detection performance. We con-
clude that the evenly-distributed examples, due to the subsampling training set based 
on the manifold embedding, and no outliers, discarded during the manifold learning, 
contribute to the improved performance. The added virtual examples can improve the 
performance of the detector further. 
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